The SAM-Grid Fabric Services
G. Garzoglio?, I. Terekhov?®, A. Baranovski®, S. Veseli®, L. Lueking?®, P. Mhashilkar* and V. Murthi®

8Fermilab, Batavia, IL

To enable globally distributed computing for a large HEP experiment, a collection of computing and data
storage facilities, together called the Grid fabric, must be linked together in a coherent way. The standard
Grid software, including most notably the Globus Gatekeeper and Meta Directory Service, provides core tools
to insert a site into the Grid and for its low-level monitoring. In practice, large experiments have data and job
handling infrastructures that are not governed by the core tools. For example, local job submission is seldom
done directly to the batch system, but rather, through an interface that allows for pre-submission steps (such
as the decomposition of a job into smaller chunks) or is tightly integrated with a data handling system such as
SAM. Likewise, monitoring is seldom done in terms of individual processors or individual jobs, but rather, via
cluster-wide aggregated characteristics. In this paper, we present some of the work we have done to abstract
the management of the fabric facilities of the FNAL Run II experiments, in order to enable globally distributed

computing.

1. INTRODUCTION

The goal of the SAM-Grid project [1-5] is to
provide fully distributed computing for DZero
and CDF, the two experiments at Fermilab cur-
rently collecting large datasets during the Run
IT of the Tevatron Collider. For about the first
18 months of the project, we have concentrated
on the integration of standard grid tools, such as
the Globus Toolkit [6] and Condor-G [7], with
SAM [8-12], the data handling system of the ex-
periments. The subsequent phase of deployment
to the collaborating institutions has proven to be
unexpectedly difficult[13], mainly for the integra-
tion of the Grid infrastructure with the local re-
sources: the Fabric. We believe that the princi-
pal cause of the problems was the lack of ”stan-
dard” services (see also [14]), such as local stor-
age management, sandbox management or batch
system adaptation mechanisms. The SAM-Grid
has overcome these problems by implementing
the needed local services. In this paper we de-
scribe these services.

2. LOCAL BATCH SYSTEM ADAPTA-
TION

After our first experience deploying the SAM-
Grid, we concluded that the ”standard” batch
system interfaces implemented in the Globus
Toolkit are not flexible enough to include most
of the resources of DZero and CDF. Even at
sites running the same batch system, we observed
that different administrators frequently configure
the batch system differently because of local con-
straints, thus requiring the local users to submit
jobs using slightly different commands. In some
other cases, the terms of the agreement to use
the resources could be respected only by adding
special attributes to the job submission request.
For example, when DZero submits monte carlo
production jobs at the condor cluster of the Uni-
versity of Wisonsin at Madison, the job descrip-
tion file must include special attributes to pre-
vent job eviction. Another example is running
monte carlo jobs at the IN2P3 computing facility
in Lyon, France: the BQS batch system is locally
configured to let the job overcome the downtime
of their local mass storage system, HPSS, only in
case the job is submitted with a special option.
These attribtues and submission options are all
non-standard and site specific.

In addition to the site-specific peculiarities of
the batch system, for the typical high energy
physics application, job submission is seldom
done directly to the batch system, but rather,
through experiment-specific local interfaces that
take care of the job preparation. Such prepara-
tion steps include the triggering of data handling
systems such as SAM, the use of local job sand-
boxing mechanisms, or the decomposition of the
job into smaller tasks, generally executed as par-
allel instances.

In order to address this concern, the SAM-Grid
team has developed a series of job management
scripts that use the experiment-specific interfaces.
These scripts are invoked via standard grid mech-
anisms, such as the Globus Gatekeeper. From
within these scripts, the invocation of the local
batch system commands is done via an interme-
diate layer that abstracts the basic interactions
with the batch system. This layer is configured
locally with the specific commands used for job
submission, look up and cancellation. The batch
system adapter is also configured to interpret the
output of the batch system commands, to enable
the extraction of relevant information, such as the
local job id after submission, the status of the job
after lookup or the error messages after any com-
mand invocation.

This additional level of indirection in the con-
figuration of the local job management has been
proved of fundamental importance during the
phase of deployment. Despite its usefulness,
though, because of its flexibility, the configura-
tion of the batch adapter is still considered by our
collaborators one of the most challenging parts of
the configuration procedure and it is, in practice,
left to the SAM-Grid system experts.

3. DYNAMIC PRODUCT RETRIEVAL

The portability of the code is the key ele-
ment for the execution of jobs on the grid. At
DZero, tools have been developed that address
the problem of recreating the Run Time Envi-
ronment (RTE)[15] of the typical applications.
These infrastructures give the users the ability
of packaging their programs with all the soft-
ware dependencies, thus enabling the execution in

rather ”hostile” computing environments. There
are certain classes of jobs, though, that use stan-
dard applications driven by user specified con-
figuration parameters, which require little or no
user-provided code. These applications can be
quite large (on the order of a few Gigabytes, even
when compressed) and packaging them for every
job would be quite costly. These costs add up,
considering that every such archive needs to be
transported and temporarily stored possibly in
more than one place throughout the lifetime of
the job.

On the other hand, experiments also maintain
dedicated clusters, configured to provide access
from any worker node to any standard experiment
products. When running on these clusters, users
just need to provide their custom version of the
code or the configuration files to run the stan-
dard applications. Administrators are responsi-
ble for installing and maintaining these products,
trying to compromise between the available disk
resources and the users’ requests to run on a large
span of product versions. This model is quite
expensive for the administrator and does not let
the users take advantage of non-dedicated clus-
ters that may be available to the community us-
ing RTE mechanisms.

Within the SAM-Grid, we use a hybrid model
that promotes the advantages of the two ap-
proaches. Many commonly used applications,
such as the Monte Carlo production products,
which are made portable via RTE techniques as in
the first model, are stored into the data handling
system of the experiments. The clusters that are
part of the grid are configured to provide a local
data cache, managed by a SAM data handling ser-
vice. Users who run jobs that use these standard
applications can specify them in the Job Descrip-
tion File as dependencies, as in the second model.
After the job has entered a cluster, the middle-
ware is responsible for the delivery of the depen-
dencies to the worker nodes, before passing con-
trol to the user’s application. This approach has
many advantages. First, products are no longer
installed and maintained by the system adminis-
trator, but rather, brought into the data handling
cache and installed upon request. Therefore, the
size of the software provided directly by the user

can be rather small. Second, since the cache
is automatically managed, there is no longer a
maintenance concern for the availability of older
software versions at a site. Third, applications
and their usage can be thoroughly catalogued us-
ing the metadata mechanisms of the SAM data
handling system. Fourth, this mechanism can be
used in conjunction with user-provided RTE exe-
cutables, providing a high degree of flexibility in
running the jobs.

4. LOCAL SANDBOX MANAGEMENT

When submitting a job to the grid, a user is re-
quired to supply a description of the characteris-
tics of the job, such as application name, product
dependencies, optional input dataset, etc., and/or
an archive containing the software and configu-
ration files needed to run the application. This
archive is sometimes referred to as the input sand-
box. The output of the job, such as the error and
output streams, relevant log files and output files
is sometimes called the output sandbox. It should
be noted the SAM-Grid handles the large input
and output data files and potentially the product
releases via the SAM data handling service, hence
dramatically reducing the size of the sandboxes,
since these files do not need to be part of them.

The standard grid tools implement a protocol,
GRAM][6], that allows the transport of the sand-
boxes and the submission and monitoring of the
job. Nevertheless, there are no standard tools
to manage the sandboxes at the local cluster.
Ideally, the sandbox management should be able
to rely on a local storage service, with a well-
defined interface to, at a minimum, store, retrieve
and remove input and output files from anywhere
within the cluster. Even if implementations of
local storage services are available [16,17], they
are not very widely deployed and generally con-
sidered non-standard. Instead, what is generally
provided at the cluster is disk space accessible
from the gateway node, and some mechanism of
intra-cluster communication. This is achieved at
every site using a wide variety of different strate-
gies. Typically, either nodes use a common net-
work file system, or the batch system is config-
ured with some form of input file stage-in/output

file stage-out, or the nodes have access to an
open network. Each of these strategies is not a
general solution and each has weaknesses. For
example, the typical network file systems used,
NFS, has scalability problems, especially during
writes; stage-in/stage-out often can only be trig-
gered from special places within the cluster and
at certain times only, such as e.g. from the head
node at the time of submission; open networks
are becoming less and less popular, considering
the proliferation of site firewalls.

Considering that no standard local storage ser-
vice exists today, the SAM-Grid sandbox man-
agement infrastructure, instead of trying to adapt
to all possible different cluster configurations,
starts up dynamically a gridftp server, hence
guaranteeing a uniform intra-cluster transport
mechanism. Input sandboxes coming from the
grid are kept compressed at the gateway node in
a disk area unique to the job. For every job, the
infrastructure creates a self-extracting archive,
containing the user’s delegated credentials, the
gridftp client and the directives necessary for the
delivery of the input sandbox and the dependent
products. It then submits an appropriate number
of parallel instances of the job, using the batch
system adaptation mechanism described above,
relying only for this first executable on the native
intra-cluster transport mechanism. At the worker
node, the environment of the job is recreated and
the control passed to the user’s application. After
the execution has terminated, before cleaning up
the scratch space, the custom output is packaged
and transferred to the gateway node, in order for
it to be bundled together with the output of all
the other job instances, and sent back to grid.
The SAM-Grid makes this output bundle avail-
able to the user for download from the web.

5. JOB COMPLEX-STATUS LOGGING

As discussed in the paragraphs above, a job
submitted to the SAM-Grid is decomposed in an
appropriate number of parallel instances at the
remote execution cluster. This hierarchical re-
lationship is in principle even deeper, considering
that by design a single grid job can be partitioned
to run concurrently at multiple remote sites. Be-

ing able to monitor and log the complex status of
the job, i.e. at the granularity of the single job
instance running at a certain node of a cluster, is
of crucial importance. To present a uniform view
of the job status, we need a representation inde-
pendent from the status given by the particular
type of batch system. The schema representing
the job status should also be flexible enough, to
allow the addition of extra information, as our
understanding of the associated relevant metrics
evolves with time. Moreover, in the spirit of the
grid, we promote a distributed logging architec-
ture, where every local monitoring service is re-
motely accessible.

To conform to the considerations above, noting
that the hierarchical structure of the jobs is nat-
urally represented in XML format, our job status
logging service is based on XML databases de-
ployed at every execution site. Each database is
accessible from anywhere outside and inside the
cluster. This makes possible the central gather-
ing and summary of the status of the jobs in the
whole grid [18]. In addition, applications can use
this service to publish internal details of the jobs.
For example, the job flow manager of the experi-
ments [19], which is typically used for the produc-
tion of simulated (Monte Carlo) events, uses this
mechanism to make available the current stage of
the production chain of every job instance. This
is possible because of the schema flexibility of the
XML database, and the ability of pushing infor-
mation into the system.

6. CONCLUSIONS

The SAM-Grid project provides Grid and Fab-
ric level services for job, data and information
management. We believe that the general under-
standing of the services necessary at the Fabric in
order to seamlessly interface to the Grid is lagging
behind with respect to other topics in Grid com-
puting. We had a first hands-on experience with
these limitations and we have overcome them im-
plementing the Fabric-level services described in
this paper.

REFERENCES

1.

2.

N s

11.

12.

13.

14.

15.

16.

17.

18.

19.

SAM-Grid project:
d0.fnal.gov/computing/grid
”Grid Job and Information Management for
the FNAL Run IT Experiments”; proceedings
of CHEP 03; I. Terekhov et al.

"SAM-GRID: A System Utilizing Grid Mid-
dleware and SAM to Enable Full Function
Grid Computing”; proceedings of Beauty 02;
R. Walker et al.

”The SAM-GRID project: architecture and
plan.”; proceedings of ACAT 02; G. Garzoglio
et al.; NIMA14225, vol. 502/2-3 pp 423 - 425
”Meta-Computing at D0”; proceedings of
ACAT 02; I. Terekhov et al.; NIMA14225,
vol. 502/2-3 pp 402 - 406

Globus Toolkit: http://www.globus.org
Condor: http://www.cs.wisc.edu/condor
SAM project: http://d0db.fnal.gov/sam
"D0 Data Handling”; proceedings of CHEP
01; V. White et al.

http://www-

. ”SAM Opverview and Operational Experience

at the DO experiment”; proceedings of CHEP
01; L. Carpenter et al.

”Resource Management in SAM and the DO
Particle Physics Data Grid” ”; proceedings of
CHEP 01; L. Lueking et al.

”The Data Access Layer for DO Run II”; pro-
ceedings of CHEP 00; L. Lueking et al.
”Experience using grid tools for CDF
Physics”; proceedings of ACAT 03; M.
Burgon-Lyon et al.

”?GRID2003 Lessons Learned”, PPDG Docu-
ment 37, http://www.ppdg.net

RTE project: http://www-
d0.fnal.gov/~ritchie/ CPBdemo.html

Disk Farm project: http:/ /www-
isd.fnal.gov/dfarm

” Flexibility, Manageability, and Performance
in a Grid Storage Appliance”, by J. Bent et
al., proceedings of HPDC XI
Database
http://dbsmon.fnal.gov
RunJob project: http://www-
clued0.fnal.gov/mc_runjob/mainframe.html

monitoring;:

